
Unit Testing Embedded
Systems on Railways

Software Technology

Article by Bill StClair originally published in Automotive Electronics Magazine June/July 2005

Since the Industrial Revolution railway technology

has been an engine of growth in the European

economy. Plodding coal-fired engines have been

supplanted by rail systems that ride electro-mag-

netic waves and make safety-critical decisions

in milliseconds. In order to keep pace with rising

demands of the railway industry, both technologi-

cally and financially, the software that drives today’s

railway systems must be thoroughly tested by the

producers of such systems and not by the custom-

ers and citizens that depend upon them.

Fortunately, software engineering methodologies

have been evolving to meet these demanding crite-

ria and as new techniques have become available

the rail industry has been

amongst the first to take

advantage of the benefits

they bring. A strategy for

testing software is now

seen as critical as software

design and implementa-

tion. Certain development

methodologies, such as

Extreme Programming, require test designs be

specified before implementation begins. Notwith-

standing the development methodology you now

deploy, today’s software testing requires an enforce-

able strategy that can be applied consistently and

repeatedly across your entire software system.

A proven strategic approach to testing which has

become commonplace within the railway industry

includes a thorough yet complementary combina-

tion of Functional and Unit Testing. Functional Test-

ing includes the demonstrated capability of your

software to meet customer requirements. This cat-

egory of testing is typically performed at the system

and/or subsystem levels; it is highly procedural,

consisting of hundreds of “steps” and is part of a

top-down process of system validation.

However, Functional Testing alone is rarely suffi-

cient. This insufficiency is due in part to the obvious

precondition that the system (or subsystem) under

test must be coded and functional before testing

can begin. If you consider the merits of iterative

development and its ability to focus on the parts

(or components) of your system in order to effect

a modular design, another testing technique must

be employed. This technique, called Unit Testing,

is a bottom-up process that focuses on system

internals, such as classes and individual functions.

Not only does Unit Testing facilitate early stage or

prototype development, it

can also be used to cover

the paths and branches

in your code that may be

unpredictable or otherwise

are impractical to exercise

from a Functional Test

perspective.

Defining Unit Testing

It is not always clear exactly what is meant by the

term Unit Testing. People often talk about Unit Test-

ing when in fact they are actually referring to the

similar process of Module Testing, as illustrated in

the following diagrams.

Put simply, Unit Testing (Figures 1 and 2) is a proc-

ess of testing an individual software unit (function,

method, etc) in isolation while Module Testing

(Figure 3) allows for the simultaneous analysis of

several units, i.e. a multi-unit test.

Unit Testing Embedded Systems
on Railways
Bill StClair of LDRA

A strategy for testing soft-
ware is now seen as critical

as software design and
implementation.

2

The rail industry can learn from the aerospace business in using software development
tools, says Bill StClair.

There are two primary activities in a Unit (or Module)

test: Interface testing and test verification. Many

projects focus the Unit Testing process on deriving

inputs and expected outputs from a requirements

and design base and then utilising this information

to determine if the set of actual outputs matches

those predicted.

In addition to the interface technique of Unit Testing,

projects often apply different analysis levels. For ex-

ample many projects apply Unit Testing techniques

simply to achieve coverage analysis and have no

interest in the actual input or output values associ-

ated with this analysis. Typical coverage require-

ments may include Statement, Branch, MC/DC and

LCSAJ path coverage.

Other additional analysis levels that may or may

not be applied include various types of stub analy-

sis such as the monitoring and validation of input

parameters passed to stubs and the collating of

statistics relating to the number of times each stub

is called.

Real Time and Embedded Systems
Testing Challenges

The problems associated with traditional, manual

methods of Unit Testing are numerous and studies

have suggested that the technique is under-utilised

by up to 90% of software developers as a result.

The following describes some of the key problem

areas:

• Lack of a unified and structured method means

 that techniques are applied on a project-by-

 project basis with little opportunity for the devel-

 opment of industry-wide standards.

• Increased overhead associated with maintaining

 and changing manually generated driver pro-

 grams and scripts in response to changes in

 application code.

• The complex nature of many test harnesses

 requires highly skilled engineers and also means

 that the harness code itself may contain pro-

 gramming errors that have to be debugged be

 fore the code unit under test can be analysed

 comprehensively.

• Manually checked regression processes are

 susceptible to human error.

• Changes to the application code may introduce

 changing requirements and necessitate modifica-

 tion of the associated test scripts and drivers.

Coupled with the generalised issues listed above,

the Unit Testing of real time and embedded software

applications raises a series of more specific issues.

These include available memory, timing considera-

tions, communication links and software/hardware

considerations. Working within specific target

memory constraints is not something that is par-

ticular to Unit Testing. However it is the norm that

processor resources are used to the maximum or

near maximum by the application code and this does

give rise to additional issues that do not occur with

the Unit Testing of non-embedded systems.

3

“The problems associated with
traditional, manual methods
of Unit Testing are numerous
and studies have suggested
that the technique is under-uti-
lised by up to 90% of software
developers as a result.”

Unit Testing
Figure 1

Unit Testing
Figure 2

Module Testing
Figure 3

www.ldra.com

4

 For example, greater consideration must be given to

the ‘physical’ size of the driver programs and associ-

ated test cases. These must be kept to a minimum

to ensure that they will actually fit into the target

environment.

This is particularly difficult given the greater de-

gree of rigour and hence test input/output that is

required for the analysis of safety-critical systems.

While driver code that facilitates Statement, Branch

and MC/DC coverage can be easily compressed,

this is not the case when there is a requirement

for test path (LCSAJ) measurement. Add to this the

requirement of some software standards to provide

a repeatable process capable of demonstrating com-

pliance at both the source and object code levels,

and it is clear that target constraints can have very

serious implications for the overall test process.

Automated Unit Testing

Many of the problems associated with the im-

plementation of traditional, manual Unit Testing

processes are concerned with the high skill levels

required and the considerable, additional overhead

that such techniques can impose.

Automation of these processes with the use of tools

enables the techniques to be made more standard-

ised yet intuitive. These are highly desirable goals

with potential benefits of increased efficiency and

reduced costs.

Automation of the Unit Testing process permits the

development of repeatable processes and the stand-

ardisation of testing practices. Often tools provide

facilities to enable the capture and storage of com-

plete test information that can be held in a configu-

ration management system with the corresponding

application source code and retrieved and imported

at a later date for regression testing. These facilities

support outsourcing and audit with the opportunity

to introduce greater efficiency and reduce costs in

the overall software development process.

Automated tools facilitate greater degrees of control

and management of the Unit Testing process as a

whole. This can include, for example, the manage-

ment of test data with the storing of default values

in data dictionaries and other techniques to ensure

information is available to project team members in

a uniform manner.

The use of automated tools greatly enhances the

testing of embedded systems. Such tools imple-

ment facilities to assist the user to reconfigure I/O

channels and to enable testing of software applica-

tions in a variety of host and target environments.

Tool facilities may be further extended to assist

with the management of information retrieval from

the chosen execution environment. This can help

to remove some of the more difficult configuration

issues associated with the Unit Testing of embedded

systems.

The experiences of the railway industry demon-

strate that Unit Testing as a technique has a great

deal to offer the developers of embedded software

applications that are seeking to test these systems

to the highest possible standards. Add to this mix

the growing number of tools that provide the ability

to apply Unit Testing techniques with high levels of

automation and you have the potential to achieve

significant improvements in the safety, quality and

integrity of such systems to the obvious benefit of

developers and, more importantly, the people that

depend on them.

Bill StClair is a Technical Evangelist at LDRA

LDRA Headquarters

Portside, Monks Ferry,
Wirral, CH41 5LH
Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

LDRA Technology Inc. (US)

Lake Amir Office Park
1250 Bayhill Drive Suite # 360
San Bruno CA 94066
Tel: (650) 583 8880

